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We demonstrate that for small deviations from the regimes of its validity, the method of images (MOI)
yields results for the passage time statistics that agree very well with the results obtained via direct nu-
merical simulations of the integrate-fire model. The Gitterman-Weiss (GW) [Moshe Gitterman and
George H. Weiss, preceding Comment, Phys. Rev. E (to be published)] calculation, while undoubtedly
correct, sheds no new light on this problem, since it is valid in the same parameter regime as the MOI.
Moreover, the MOI allows one to accurately predict critical behavior observed in the first passage densi-

ty function.

PACS number(s): 05.40.+j

For the time-homogeneous problem corresponding to
the ¢ =0 case of Eq. (5) of [1], the method of images
(MOI) yields exact results, as is well known [2]. For
q >0, however, the MOI is not exact. The fundamental
premise in [1] was that for very small signals such that
0<g <<u, where pu is the constant drift term, the MOI
should yield useful approximate results. In fact, the
Gitterman-Weiss (GW) approach [3] has precisely the
same requirement.

The Bulsara-Lowen-Rees (BLR) work comprises analy-
ses of noise-induced cooperative phenomena and consists
of two distinct parts. The first part, based on an applica-
tion of the MOI, concerns the first passage time density
function (FPTDF) and appears in Sec. II of [1]. The
second part, in Sec. III, concerns the power spectral den-
sity. In Fig. 2 of [1], the FPTDF is shown in the presence
and absence of a weak signal for two sets of parameter
values. We reiterate that the case for ¢ =0 is known to
be exact; thus can also be easily verified numerically. In
Figs. 1 and 2 we show the FPTDF computed using the
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FIG. 1. FPTDF vs normalized time ¢ /T, obtained via direct
simulation of Eq. (1) of [1] (dashed curve) and the MOI approxi-
mation, Eq. (7) of [1] (solid curve). a =20, o (=27/T,)=0.1,
D =0.2, u=0.065, and g =0.03. See [1] for notation.
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MOI (solid curves) and numerical simulations of the dy-
namics from Eq. (1) of [1] (dashed curves). The parame-
ter values correspond to Fig. 2 of [1] and only the ¢ >0
cases are considered. We readily observe the following.

(i) The MOI accurately estimates the location of the
peaks and their relative heights. The primary difference
between the MOI results and the numerical simulations is
a small vertical shift, a quantitative change.

(ii) As p/q increases, one obtains better agreement be-
tween the MOI and the exact numerical simulation re-
sults, as expected. )

(iii) It is well known [2] that the motion in the BLR
model is drift dominated. Noise may change the shape of
the FPTDF (its width and tail, for example), but it does
not change the mean first passage time (MFPT) 7; for
g =0 this is given by t,=a/u, which is equal to the
deterministic passage time. For 0 <q <<y, the MFPT (in
the presence of noise) and the deterministic passage time
are nearly identical. This passage time was computed
directly from the deterministic dynamics using the same
perturbation constraint that underlies the MOI in Eq. (9)
of [1]. The GW theory is a more precise rendition of Eq.
(9) of [1]. As observed by Gitterman and Weiss them-
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FIG. 2. Same as Fig. 1 with £=0.1.
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selves, the noise might introduce only a small vertical
scale shift in the unnormalized MFPT; therefore, whatev-
er multiple frequency resonances may exist in the MFPT
should not be strongly noise dependent. We see precisely
this kind of effect in the resonance observed in the output
signal strength in Figs. 11 and 12 of [1]. This resonance
should not be labeled a “stochastic resonance” in the
sense of the commonly accepted definition (see, e.g., Refs.
[1-6] in [1]); in this regard, the GW terminology is in-
correct.

(iv) As observed in [1], the FPTDF for 0 < g <<y con-
sists of a sequence of peaks superimposed on the FPTDF
corresponding to ¢ =0. Hence we expect close agree-
ment among the MFPTs computed (i) by numerical in-
tegration over the FPTDF, (ii) via the MOI expressions,
and (iii) by direct simulations of the underlying stochastic
differential equation. To test this assertion we compute
the MFPT for the four curves shown in Figs. 1 and 2, for
both the g =0 case (t;) and the ¢ >0 case (7), and com-
pare their ratios. For ©=0.065 (Fig. 1), ¥/t,=1.0090
when computed using the numerical simulation (dashed
curve) and 0.9999 when computed using the MOI (solid
curve). For the p=0.1 case (Fig. 2), these numbers are
1.0092 and 0.9999, respectively. (All other parameter
values correspond to Fig. 2 of [1].) In Fig. 3 we have deli-
berately violated the perturbation condition for the MOI,
choosing £ =0.065 and g =0.055 so that g <<u no longer
holds. While the features enunciated in item (i) above
still hold, we nevertheless obtain excellent agreement be-
tween the normalized MFPT corresponding to the nu-
merical simulations (1.0053) and the corresponding quan-
tity obtained via the MOI (0.9894). Hence we expect, al-
though this was not computed in [1], that we will obtain
the same resonance behavior that Gitterman and Weiss
obtain and, moreover, that the results will accord sub-
stantially with numerically computed MFPTs.

In addition to the above observations, we wish to point
out that all the resonance behavior depicted in Figs. 3-5
of [1] has been validated by numerical simulation. While
there exists a small vertical offset with respect to the
curves corresponding to the MOI (related to the shift ob-
served in Figs. 1 and 2 of this paper), the location of the
peaks in Figs. 3 and 4 of [1] is correctly captured by the
MOI, in agreement with our observations in item (iv)
above. In recent work [4], we have analyzed the “leaky”
integrate-fire model in which the underlying dynamics is
an Ornstein-Uhlenbeck process; this is a far richer model,
in which the MFPT is strongly noise dependent, and it
contains the BLR work as a subset. In this work, we
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FIG. 3. Same as Fig. 1 with ¢ =0.055 and ©=0.25.

demonstrate the above-described agreement between the
MOI and the numerical simulations insofar as the predic-
tion of the noise-induced critical behavior is concerned.
Further, we show the existence of a true noise-dependent
resonance in the MFPT, in contrast to the BLR and GW
works; this is directly attributable to the dependence of
the MFPT on noise. In [4] we also describe, in greater
mathematical detail, the conditions under which the
MOI would be expected to yield acceptable agreement
with the exact dynamics. In addition to the above-
mentioned condition on the signal amplitude, the signal
frequency should be very low; strictly speaking, it should
be the lowest frequency in the system, corresponding to
the often-used adiabatic assumption in modulated sto-
chastic systems. Although the figures in this paper (and
in [1]) were obtained with a signal frequency that is some-
what larger than the value predicated on the adiabatic as-
sumption, nevertheless the results of the MOI closely fol-
low those of the numerical simulations.

In conclusion, we feel that the GW yields no improve-
ment over the MOI since it makes identical assumptions.
The MOI theory yields results in good accord with nu-
merical simulation under the appropriate assumptions; it
also yields a very good approximation to the FPTDF. In
turn, this permits us to explore the above-described reso-
nance behavior (in the FPTDF) and to connect it to the
recent definition of stochastic resonance as a synchroni-
zation phenomenon [5]. This behavior, described in
much greater detail in [4], cannot be described within the
GW theory.

[1] A. Bulsara, S. Lowen, and C. Rees, Phys. Rev. E 49, 4989
(1994).

[2] D. Cox and H. Miller, The Theory of Stochastic Processes
(Chapman and Hall, London, 1965); W. Feller, An Intro-
duction to Probability Theory and its Applications (Wiley,
New York, 1971), Vol. 2.

[3] Moshe Gitterman and George H. Weiss, preceding Com-
ment, Phys. Rev. E 52, 5704 (1995).

[4] A. Bulsara, C. Doering, T. Elston, S. Lowen, and K. Lin-
denberg (unpublished).

[5] L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys.
Rev. Lett. 74, 1052 (1995).



